Novel preconditioners based on quasi-Newton updates for nonlinear conjugate gradient methods

نویسندگان

  • Caliciotti Andrea
  • Giovanni Fasano
  • Massimo Roma
چکیده

In this paper we study new preconditioners to be used within the Nonlinear Conjugate Gradient (NCG) method, for large scale unconstrained optimization. The rationale behind our proposal draws inspiration from quasi– Newton updates, and its aim is to possibly approximate in some sense the inverse of the Hessian matrix. In particular, at the current iteration of the NCG we consider some preconditioners based on new low–rank quasi–Newton symmetric updating formulae, obtained as by–product of the NCG method at the previous steps. The results of an extensive numerical experience are also reported, showing the effectiveness, the efficiency and the robustness of this approach, which suggests promising guidelines for further studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploiting damped techniques for nonlinear conjugate gradient methods

In this paper we propose the use of damped techniques within Nonlinear Conjugate Gradient (NCG) methods. Damped techniques were introduced by Powell and recently reproposed by Al-Baali and till now, only applied in the framework of quasi–Newton methods. We extend their use to NCG methods in large scale unconstrained optimization, aiming at possibly improving the efficiency and the robustness of...

متن کامل

On the Properties of Preconditioners for Robust Linear Regression

In this paper, we consider solving the robust linear regression problem, y = Ax+ ε by Newton’s method and iteratively reweighted least squares method. We show that each of these methods can be combined with preconditioned conjugate gradient least squares algorithm to solve large, sparse, rectangular systems of linear, algebraic equations efficiently. We consider the constant preconditioner A A ...

متن کامل

Probabilistic Interpretation of Linear Solvers

This paper proposes a probabilistic framework for algorithms that iteratively solve unconstrained linear problems Bx = b with positive definite B for x. The goal is to replace the point estimates returned by existing methods with a Gaussian posterior belief over the elements of the inverse of B, which can be used to estimate errors. Recent probabilistic interpretations of the secant family of q...

متن کامل

Low-rank update of preconditioners for the inexact Newton method with SPD Jacobian

In this note preconditioners for the Conjugate Gradient method are studied to solve the Newton system with a symmetric positive definite Jacobian. In particular, we define a sequence of preconditioners built by means of BFGS rank-two updates. Reasonable conditions are derived which guarantee that the preconditioned matrices are not far from the identity in a matrix norm. Some notes on the imple...

متن کامل

Robust Parallel Newton { Multilevel

The present paper is devoted to the numerical solution of nonlinear boundary value problems arising in the magnetic eld computation and in solid mechanics. These problems are discretized by using nite elements. The nonlinearity is handled by a nested Newton solver, and the linear systems of algebraic equations within each Newton step are solved by means of various iterative solvers, namely mult...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optimization Letters

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2017